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ABSTRACT

The following conjecture of V. I. Arnold is proved: every measure pre-

2
serving diffeomorphism of the torus T , which is homologeous to the identity,

and which leaves the center of mass invariant, possesses at least 3 fixed

points. The proof of this global fixed point theorem does not make use of the

generating function technique. The theorem is a consequence of the statement

that a Hamiltonian vectorfield on a torus T2n, which depends periodically

on time, possesses at least (2n+l) forced oscillations. These periodic

solutions are found using the classical variational principle by means of two

qualitative statements for general flows. A second conjecture of V. I. Arnold

proved concerns a Birkhoff-Lewis type fixed point theorem for symplectic maps.
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SIGNIFICANCE AND EXPLANATION

J -s'Periodic solutions of Hamiltonian systems are also critical points ofI
a function on the loop space of the underlying phase space. If this functional

is bounded below, Morse's theory of critical points applies and he made such

an application to the problem of closed geodesics.

In the present problem (and in many more which arise in physics) the

functional is not bounded below and in fact tends to 4 and to - on

(different) infinite dimensional sets. Understanding such 'infinitely

indefinite' functionals is basic for mathematical physics.

The fundamental work of P. Rabinowitz set the tone for overcoming this

difficulty. It's modification here solves (the simplest version) of one of the

key problems of symplectic geometry.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



The Birkhoff-Lewis fixed coint theorem

and a conjecture of V.I. Arnold

C.C. Conley and E. Zehnder

1. Introduction. Results

The aim of this note is to prove two fixed point theorems for

symplectic maps which are generated by timedependent globally Hamil-

tonian vectorfields, which however are not assumed to be close to the

identity map. In the case that W is a symplectic diffeomorphism on

2n 2n 2n 1 t .the torus T -R /Z this requires that i - * , where L is

the flow satisfying
.1 tt 0

dLt (x) - JVh(t,, (x) , 0 - id

the function h C 2(Rx R 2 n ) being periodic in all the variables of

period 1. The skew-symmetric matrix J e(2n ) is the standard

symplectic structure on R2 n . Clearly, a periodic solution on T2n

having period I of the Hamiltonian equation

(1) Jh(t,x) , xat

gives rise to a fixed point of %p ,and the problem is to find !-periodic

solutions of the Hamiltonian system, which is periodic in time of

period 1. The first result is as follows.

2nTheorem 1. The Hamiltonian vectorfield (1) on T , with the function

h(t,x) 4 C 2(Rx 2 n ) being periodic of oceriod I oossesses at least

2n +1 periodic solutions of period 1.

The periodic solutions found by the theorem are contractible

2n 2 nloops on T , i.e. are given as periodic functions or. R . One

expects more periodic solutions, if all the periodic solutions are

known to be nondegenerate. Here we call a I-periodic solution non-

Sponsored by the United States Army undei Contract No. DAAG29-80-C-0041.



degenerate, if it has no Floquet-multiplier equal to I Recall that

A 4 C is a Floquet-multiplier of a periodic solution x(t) - x(t+1)
I t

if A is an eigenvalue of d 1(x(O)) , where o is the flow of the

corresponding timedependent vectorfield. Indeed, the following

statement holds true:

Theorem 2 . Assume that all the periodic solutions having period I of

the system (1) are nondegenerate. then there are at least 22 n  of

them.

From then existence statement for periodic solutions one deduces

immediately the following Corollary for the symplectic map * . We

call a fixed point x - (x) nondegenerate if 1 is not an eigenvalue

of d*(x)

Corollary 1. Every svymlectic C -diffeomorphism * on the torus

T - R2n/Z2n , which is generated by a globally Hamiltonian vector-

field, possesses at least 2n+ 1 fixed points. If, moreover, all the

fixed points of 4P are nondegenerate, then there are at least 22n

of them.

The symplectic diffeomorphism which meet the assumption of the

Corollary can be characterized as follows. If (M,w) is any compact,

symplectic and smooth manifold, we denote by Diffc(M,w) the topo-

logical group of symplectic C-diffeomorphisms ;p , i.e. 4*w - w .

Let Diffo(M,w) be the identity component in Diffe(Mw) , which can
0

be shown to be the identity component by smooth arcs in Diff(Mw)

It has been proved by A. Banyaga [41, that the commutator-subgroup of

Diff C(MM) consists precisely of those symplectic diffeomorphisms,
0

which are generated by globally Hamiltonian vectorfields on M , and

hence agrees with the subgroup of symplectic diffeomorphisms having

vanishing so-called Calabi-invariant.

-2-
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As a special case we consider a measure prelserving diffeomor-

2 2phism of T , which is homologeous to the identity map on T and

2
hence is, on the covering space R , of the form

(2) go : x,--x+f(x) , x 6 R2

with f being periodic. As observed by V.I. Arnold, see [ 2 1, this

map 40 is generated by a globally Hamiltonian vectorfield on T2  if

and only if the meanvalue of f over the torus vanishes, i.e. [f] - 0

This fact will be proved in the appendix. We therefore conclude from

theorem 1 the following result, which was conjectured by V.I. Arnold

in (21 and 131.

Corollary 2. Every measure preserving C -diffeomorchism of T2 which

is of the form (2) wtith [f] - 0 has at least 3 fixed coints.

The condition flf - 0 is clearly necessary in order to guarantee

a fixed point, as the translation map x--x+c shows, which has no

2 2fixed points on T ,if c J Z

We point out that it is not assumed that the symplectic maps con-

sidered are C -close to the identity map. Indeed under this additional

assumption the above fixed points can easily been found as critical

points of a so-called generating function, which is defined on the

torus. The idea of relating fixed points of symplectic maps to critical

points of a related function defined on the corresponding manifold

goes back to H. Poincar6 (111. It has been exploited by A. Banyaga f 5 1.

J. Moser ( 8 1 and A. Weinstein (121 in order to guarantee fixed points

for symplectic maps, which are however assumed to be C1-ciose to the

identity map.

-3-



The second result is related to the Birkhoff-Lewis fixed point

theorem, for which we refer to J. Moser [Q. The problem can be re-

duced to an exact symplectic diffeomorphism on Tn x D , D c tn

being a disc, which is assumed to be close to an integrable map.

Instead we would like to replace such an interior condition by a con-

dition at the boundary Tn X OD only. To be precise we consider on the

symplectic manifold Tn x Rn the time-dependent globally Hamiltonian

vectorfield given by

h(t,x,Y) C2 (RxTnx In)

and periodic in t and x of period 1. We suppose that

(3) h(t,x,y) = <y,by> + <a,y>

if lyl > 0 , where b E S(Rn) is a time-independent, symmetric

and non-singular matrix, and where a a Rn  are constants. Set

T nx D - {(x,y) a Tn x Rl IJyj <I) . Under these assumptions, the

following statement holds true.

Theorem 3. The Hamiltonian vectorfield on TnX In admits at least

n+1 periodic solutions of period 1, which are contained in Tn XD

Again the periodic solutions found are special: their projections
Tn arnotrcil

onto T are contractible loops on T . The symplectic diffeomor-

phism generated by the above time-dependent Hamiltonian vectorfield

admits then at least n+I fixed points in Tn x D

-4-



2. idea of the proof

The proof of these theorems is based on a variational principle

for which the periodic orbits are critical points. This variational

problem differs from that customarily used in mechanics, which in the

example of the geodesic flow on a manifold M is the length integral

or the energy integral. In contrast, the variational principle used

here is defined in the loop space over a symplectic space, in the

above example, over T*M . In our problem of the torus T2 n = R 2n/Z 2 n

2n
we consider, on the covering space R , the action functional, de-

fined on periodic functions x(O) - x(1)

f(x) - 10  <*,Jx>- h(t,x(t)) Jdt

whose Euler-equations are indeed the Hamiltonian equations (1).

This functional is neither bounded from above nor from below. That

it still can be used effectively for existence proofs was first shown

by P. Rabinowitz and subsequently used by many authors. Since h is

periodic, following the ideas of ( 1 ], it will be shown that the

required critical points of f are in one-to-one correspondence to

the critical points of a function g , which is defined on the finite
2 n N N

dimensional manifold M = T x R x R for some large N . The critical

points of g are then found as the rest points of the gradient flow

V9 on M . From the fact, that h and its derivatives are uniformly

bounded it follows, that the set of bounded solutions of this gradient

flow is compact and contained in the compact set B := T 2nx Dx D ,

where D is a disc in R . Moreover B- := T 2nx Dx D is the exit

set and B+ = T2 n x Dx aD is the entrance set, so that B is an iso-

lating block in the sense of ( 6 1. The proof now follows from two

general statements for flows, which are not necessarily gradient

-5-



flows. First consider any continuous flow which admits the above

very special isolating block B , with exit set B" and entrance set

B Then the invariant S of the flow contained in B carries

cohomology which it obtains from the torus T~n In fact theorem 4

states that

E(S) > - (T2 n) 2n+1

where V(X) denotes the cup long of a compact space X . The second

statement concerns Morse-decompositions. If (M1 ..... Mk) is an

ordered Morse-decomposition of a compact, isolated invariant set S

of a continuous flow, then
k

(s)< z (M.)
Jul l

by Theorem 5. If, in addition, the flow on S is gradientlike with

finitely many rest points then these rest points are a Morse-decompo-

sition of S In this case UMK) - I and we obtain the estimate
k

(S) < Z 1 - v (rest points)
J=l

We conclude that the gradient flow 7g possesses at least 2n + I

rest points and theorem 1 follows. Theorem 3 is proved similarly.

Theorem 2 is a simple application of the Morse-theorie as developed

in [7 1 to the compact set S of all bounded solutions of Vg on

M .

3. The variational principle and the reduction

We shall look for special periodic solutions of the Hamiltonian

system (1) on T2n . R2n/Z 2n , namely for those whose orbits are con-

tractible. In the covering space R of the torus these solutions

are described by periodic functions to- x(t) E r,2 n , x(O) = x(1)

The required periodic solutic s are the critical points of the

functional

-6-



(4) f(x) ,- > htxt)) )dt
0

2ndefined on the space of periodic curves in R , i.e. x(O) - x(1)

Indeed one verifies immediately that

(5) Vf (x) - -J k-7h (t,x).

2n
To be precise we introduce the Hilbert space H - L2 ((O,I)) ;i )

Define in H the linear operator A : dom(A) c H H by setting
H1 R2n )

dom(A) - {UEH (H0,01; )u(O) u(1)} and Au -- J3 if uadom(A).

The continuous operator F : H - H is defined by F(u) (t) :-7h(t,u(t)
1

ut H . Its potential *(u) is given by *(u) :m j h(t,u(t))dt , so
0

that F(u) - VM(u)

Since J -1 we can write the equation (1) in the form

-Ji -Vh(tx) and one sees that every solution u adom(A) of the

equation

(6) Au - F(u

defines (by periodic continuation) a classical 1-periodic solution

of (1). Conversely, every I-periodic solution on T2n of (1), which

is contractible on T2n defones (by restriction) a solution u of

the equation (6) . With these notations the functional f defined by

(4) becomes

1(7) f (u) -- L< Au,u> - 0 (u),

for u t do. (A) . We look for critical points of f

Since h is periodic, there is a constant a > 0 such that

(8) Ih-(t,x)I < a

for all (tx) a R x R , where ' stands for the derivative in the

x-variable. We shall use this estimate in order to reduce the problem

-7-



of finding critical points of the functional f on dom(A) to the

problem of finding critical points of a related functional, which is

defined on a finite dimensional subspace of the Hilbert space H

First observe that the operator A is selfadjoint, A - A . It

has closed range and a compact resolvent. The spectrum of A , a (A)

is a pure point spectrum and a(A) - 2 xz . Every eigenvalue h a c(A)

has multiplicity 2n and the eigenspace E(.\ - ker(X-A) is spanned

by the orthogonal basis given by the loops:

ke - (cos At)*k + (sin xt)Jek

k - 1,2,...,2n , where (ek I 1< k<, 2n} is the standard basis in R~n

In particular ker (A) - R2 n ; that is the kernel of A consist pro-

2n
cisely of the constant loops in R Denoting by (E x A R) the

spectral resolution of A we define the orthogonal projection

P e S(H) by
P £dE I with > 2a

-B

where X 2xZ Let P1 . 1-P and set Z - P(H) and Y - P1 (H)

Then U - ZeY and dim Z < c With these notations the equation

Au - F(u) - 0 , for u Edora(A) is equivalent to the pair of equations

APu - PF(u) - 0(9)
APIu - P1 F(u) - 0

Now writing u - Pu + FLu - z+y Z Y we shall solve, for fixed z a Z,

the second equation of (9) which becomes Ay - P1 F(z+y) - 0 . With

AO  AIY this equation is equivalent to

(10) y - AlpF(z+y) .

Observe that jAoij< - and I PI - . Also, from (8) we conclude

thatIF(u) - F(v)(< aJu-vf for all u,v a H . Consequently, in view

-8-



of 0>2a , the right hand side of (10) is a contraction operator

in H having contraction constant 1/2. we conclude ,for fixed z Z

that the equation (10) has a unique solution y - v(z) * Y . Since
-1t 1 1

(A y) (t I Jy(s)ds , we have A-I(Y) c H and therefore
0 ~ 00

v(z) G dom(A) . Moreover, the map zi-ov(z) from Z into Y is

Lipschitz-continuous. In fact we have jv(z 1) - v(z 2 )1 1<

j(1z,-z2I + Iv(z 1 ) - v(z 2 )I1, setting

u(z) - z + v(z)

we now have to solve the first equation of (9) , namely Az- PF(u(z)) =0,

which in view of (10) is equivalent to the equation Au(z) - F(u(z)) = .

One verifies readily that

(11) Vg(z) - Az - PF(u(z)) with g(z) :- f(u(z))

It remains to find critical points of the function g , which is de-

fined on the finite dimensional space Z .

The following observation is crucial. Since h is periodic

we conclude by uniqueness that v(z+j) = v(z) for every j e z 2 n  and

for every zo Z . Therefore u(z+j) = u(z) + j and conseqtently

2n
(12) VO(z+j) -Va(z) , j a Z

for all a Z .If zE Z , then z = x +g , with x = z] being the

mean value of z . Hence x eKer(A) and i Ker (A)' n Z . Writing

z - (xt) we conclude from (12) that V7a(z) =Va(x,) is a vector-

2n 2M 2n 2n 2n
field on (xg) e T x , where T =R /z Summarizing we have

proved

Lemma 1. The rest points of the Linschitz-continuous vectorfield

V g(z) - Vg(xt) n T2 n x R are in one-to-one correspondence with

those neriodic solutions having period 1 of the Hamiltonian equation (1)

-9-



on T2n which are contractible.

in order to find the rest points of 17g we study the gradient
d , Tn R21

flow -L z -Vg(z) on (x4) a T x R , which, explicitely, is

given by
dde x - - QoF(u(z))

(13) d

d- t - At - QF(u(z))

where Q is the orthogonal projection onto the constants, i.e.

onto the kernel of the operator A , and where Q is the orthogonal

projection onto the complement of ker(A) in Z Therefore there

is a splitting t = (t+,t) r RMx RM with

(14)

<A+t+.+> >2 ILl 2

Since h is uniformly bounded, there is a constant K>O such that

jF(u(z)) <K for every z .Z , and we conclude from (13) and (14),

that there is an e >0 with

d 2
-8- 4+12  > f if g:l > K

(15) d 2
d 2

In fact, A 21 It 2~ ,+~In ac , s 2 }+1 <g+,A+J +  - Q+F(u(z) )> -<t+,A+t+>- <t+,Q+F(u(z) )>
2 d 1 22

> 2xlt+l2 - I+I"K , similarly s It_, 2< -2,1I _1'+I _ -K , and

(15) follows. Clearly all the rest points of qg are contained in

the compact set B T 2nx D IxD 2 , where D1 and D2 are the discs

of radius K , D= {4+E RMI I+ Q < K) and D2 - (9-E RM I I4_1 < K)
Moeove B= T2n + 2

Moreover B T D1 xD 2  is the exit set of B and B + = T 2nx D1XD 2

is the entrance set, so that B is an isolating block in the sense

of [6].

-10-



T2n _ _ _ _ _

T 2n-

Summarizing we have proved:

Lemma 2. The compact set B = T 2nx D1 x D2  is an Isolatina block for

the flow of Vg with exit set B- T2n x aIxD2 and with entrance

Ase B+' T2nx D x dD2 .

We shall prove that every continuous flow which admits the above

very special isolating block (B,B-,B+ ) contains at least 2n +1

rest points in B , provided the invariant set in B is gradient like.

4. Two statements for flows
We consider, more generally, on M - Tmx RN1 x RN2  with co-

ordinates (xyly 2) a continuous flow, which is defined in an open

neighborhood of the compact set B - Tmx D I XD , where D. and D2
N1  N2are discs, D1  (y4 R H y1I : Kj) and D2= {Y 2 * R IIy2 1 < K2}

:f y ' M and if (P (y) is the orbit of the flow through y = v (Y)

we shall write t (y) = y-t . For an interval J C R we set

Y-J - (y.tlt E J} . The invariant set contained in B is defined to

be
S - (yfBIy.RcB).

-11-



Recall the

Definition: Let H*(X) be the Alexander cohomology of a compact

topological space X with real coefficients. Then the cup long of

X is defined as

t(X) - I + sup(kEFI13 a,,..... icqEH*(X)\ I with

1 CLua 2 U... N
Theorem 4. Assume a continuous flow on Tmx RNx RN 2 admits the iso-

lating block B = Tmx D I XD2 with exit set B- :a T M D1 X D2

B+ m
with entrance set B : T mx D1 x OD2 . Let S be the invariant set

in B , then:

I(s) > t(B) !(Tm) - m+1 .

We need a Lemma and define by means of the flow the compact sets

A+ - r- BIy-R+c B)
(16)

A :- .{y.BIyRcB)

It then follows, that
$ A+ -

S An A-

Lemma 3. Assume B is an isolating block with exit set B- and

entrance set B . Then B+ ,is a strong deformation retract of B\ A7

ad B- is a strong deformation retract of B\ A+

Proof: The proof follows immediately from the definition of an iso-

lating block. In fact, in order to prove that B- is a strong defor-
+ +

mation retract of B\ A+ define the continuous function T : B\ A+ - R

by setting T+ (x) - sup{tlx'[O,t] c B) Then T +(x) - 0 if and only if

x 4B- . The deformation retraction F (B\ A +) x [O,11 - B\ A+  is

simply given by F(xs) - x(sT +(x)} . The other part of the lemma is

proved similarly. a

-12-
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m M
Proof of theorem 4. Note that H*(B) = H*(Tm) , since B T x D, x D2

Let Xl.... X be the classes in H*(B) which correspond to the

de Rham classes dxi  on Tm . Then o:= Xlu x2 u...u M 0 in

H*(B) since dxI A...A dx is a volume form on Tm . We shall show

that 0 maps nontrivially to k*(S) under the inclusion induced map
V

i*% H*(B) - H*(S) . The statement E(S) m+l then follows.

To see this consider the following two diagrams, in which H*

and H, denote the singular cohomology and homology respectively

with real coefficients. Observe that B = B +u B- , and

(B \A-) u (B\ A+) - B \ (A-n A+) - B\S . Observe also, that the compact

set S is contained in the interior of B

K* (BB) H*(B.B-) - - H*(B.aB) H.(B.aB) H*(B)

u DH*(B,BA * ( ),B )-- H*(B,B\S) H.(B,B\S) V H*(B)

The vertical maps are inclusion induced. The maps i* and i*
1 2

are isomorphisms, by Lemma 3. The isomorphism D (in the second diagram)

is the Alexander duality map: 6: H (BB) H (a), with d = m+N1 + N2.

we shall find cohomology in H*(S) by means of the following argument.

Let a e H*(B,3+) and e H* (B,B-) such that a u B # 0 in H*(B, 3B).

Then a - i (ct*) for some a* c H*(B,B\A-) and B - i2(B*) for some S*

in H*(,B\A ), since i and i' are isomorphisms. Hence a u 0 - j*(a*uB*)

is in the range of J*. Now, going to the dual spaces (in the sense of vector

spaces), there is a 4 e H (B, 5) dual to a u 0 such that ji( i =: U* 0 0

in H i(B,B\S). Consequently, the Alexander dual D60) iE Hd-(B) is mapped onto

- D(p*) , 0 in d4 J(S).

-13-



If, in particular, j - VI+ N2  *then d-j - m and D(4) a km(,) ' H(Tm)

which is generated by - I u...u x . consequently
t( ) - i*( 1 u.... c) A 0 in ;P (S) and so !(S) >(T") - m 1 as

claimed in the theorem.

In order to carry out this argument concretely we first recall

that H*(B,B- ) Z H*(Tm )  * (D2 D 2 ), H*(D 1 ) and HR(B,B- ) Z

H*(TM ) 4He(D2 ) *H(D,aD1 ) , also H*(B.,B) 2 H*(T m ) OR* (D2 , OD2 )

V H*(DiID 1 ) 1" H-(Tm ) 0H*(D 1 xD 2 ,DIx8D 2u8D I xDt) . We choose now a

+ NJ
to be the image i in He(BB + ) of the generator of H (D 1 OD1 )

H (S N,.) , and we choose p to be the image , in H*(B,B - ) of
N2

the generator n of H (D2 ,aD2 ) - H N2(S N2.) . Then au 0 is equal

to the image . in H*(B,OB) of the generator of

H N +N 2 ((D1 ,8D 1) x (D2 ,8D2 )) , and so au p A 0 in H (BaB) , so

the theorem follows, by the above argument. 5

Definition: Let S be a compact invariant set of a continuous flow. A

Morse decomposition of S is a finite collection (Mp~p4P of disjoint,

compact and invariant subsets of S , which can be ordered, say

(MI M21.... E.Mk) , k - JP1 , so that the following property holds true.

if y 4 S\ U N

then there is a pair of indices i< j such that the limit sets of

y satisfy:
w(y) C Mi and w*(y) C M.

Theorem 5. Let S be any compact invariant set of a continuous flow

with Morse-Jecomposition [MP)pp . Then

S(S) :E I (M)

In particular, if 1P1 < i(S) , then some Mp has non-trivial

Alexander cohomoloqy (so contains a continuum of points).

-14-



Postponing the proof of this theorem we first derive the

corollary:

Corollary: Let S be a compact invariant set of a continuous flow.

Assume, in addition, that S is gradient like (i.e. there exists a

continuous real valued function on S which is strictly decreasing

on non-constant orbits). Then S contains at least N(S) rest zoints.

In fact, assume there are only finitely many, rest points in S

Then they form a Morse-decomposition of S , since S is assumed to

be gradient like. As none of the sets of this decomposition has non-

trivial cohomology, hence C(M P) - 1 , there must be at least e(S)

sets in the decomposition, hence I(S) rest points, proving the

corollary. It remains to prove theorem 5.

Proof of theorem 5: First observe that any decomposition of S can be

obtained by first decomposing into two sets, then decomposing one of

these and continuing until the decomposition is reached. Therefore one

needs only prove the theorem for decompositions into two sets. Thus let

(M1 ,2) be an ordered Morse-decomposition of S .

From the definition we conclude that there is a compact neighborhood

S1 of M1 in S and a compact neighborhood S2 of K42 in S with

SIV S2 - S and such that

M1 - n Sl-t and M- n S2 *(-t)
t>o t>o

Consequently, by the continuity property of the Alexander cohomology,

*(S 1 ) WH*(MI ) and H*(S 2) H*(4 2 ) , and it is therefore sufficient

to prove that f(S I) + F(S 2 ) > (S) for S US2 - S . This will follow

from the following general observation:

-15-



Lemma 4. Let S u S2 c S be three compact sets. Denote by

i l : S- S £2: S2 - S and i : S 1S 2 - S the inclusion maps. Let

ct,P a Ie(S) . Then:

i *a 0 and i - 0. *(au 0) -0O.

Proof: Consider the following diagram

*(s's ) I '(S.S 2 ) - -- ( *(sS u S2 )

* (s U 'J

R*IS) H*S) H* S)

R*(s 1) * (s2 )  H *(s IwS 2 )

The vertical sequences are exact. If a i fi*(S) satisfies i* (C) 0

then there is an ; I H*(SS ) with J*(a) - a . Similarly, if

t , othen J*(p) - for some p q H*(S,S 2 . Since

j*(;u 0)-jt(!) U TO() -au 0 we conclude, by exactness, i*(a~j 0)

- i*.J*( u ;) - 0 , as advertized.0

Going back to the proof of theorem 5 we let a 1 Pa ... 2" im be

in R*(S) such that a1U a2 u... u atA 0 . Let the a's be ordered

so that a1 u...u aL is the longest product not in the kernel of i.
Ir 2

Therefore I(S)> r+1 and i (ai u.. . r . a ) - 0 . Since
I I r r+1

S S uS 2  it follows from Lemma 4, that iT(or+2 u...u ae) ) 0 and

therefore V(S2 ),> -(r+l) +1 -e-r . Rence N(S1 ) + (S 2 ) >1 +'. We

have shown that if S admits a nontrivial product with ? factors,

i.e. if E(S) > t +1 , then f(SI) + F(S) > (+1 , so the statement of

the theorem follows. 8
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5. Proof of Theorem 1

By Lemma I the 1-periodic solutions, which are contractible on

T 2 n , are in oie-to-one correspondence with the rest points of the
gradient flow of Vg on T n x R If S is the invariant set of

this flow in the block B of Lemma 2 we conclude,by the Corollary

of theorem 5 ,together with theorem 4, that S contains at least

2n+1 rest points.8

6. Proof of theorem 3

n nOn the manifold M - T x t the Hamiltonian vectorfield is, on

the covering space Rnx fn given by the function h(t,x,y) . The

function h is periodic of period I in t and in the x-variables.

We look again for special periodic solutions which are,on Rn Rn

given by (x(t) ,y(t)) , where both x(t) and y(t) are periodic of

period 1. Hence, on Tn , the loop ti--. x(t) is contractible. These

periodic solutions are the critical points of f as defined in (4),

with x replaced this time by (x,y) . We write

2 2

h h(Y) + ho(t,x,y}

It follows from the assumption of theorem 2 that Jhol <K . We

proceed now as in the proof of theorem 1. The equation (6) looks as

follows :

Au - F I (u ) + Po (u ) - F (u),

whlere P1(u) (t) -hI(U(t)) and P0o(u) (t) -?ho0(t,u(t)) . Moreover

IF 0(u) I< K for all u i H . The operator F I(u) is a bounded linear

operator of the Hilbertspace H :

Fll u) s-Bu . Bu(t) - ( b)u (t)

Since Ih"(t,x, y)l L for same L > 0 , the sought periodic solu-

tions are again found as the critical points of a function g defined on

the finite dimensional space Z . We find

-17-



7g(t) = Az - Bz - Po0(U(Z))

Here we have used, that B commutes with the projection P of the

Hilbert space H onto Z . The vectorfield Vg(z) is this time a

vectorfield on Tn x e x R2M . More specifically we can use as co-

ordinates in Z the Fourier coefficients up to order N - [0] , with

P as in the proof of theorem 1. If :(t) - (x(t) ,y(t)) we thus have

N
x(t) - xo + (n(t) + Onpn(t))

y(t) - yo + Z (an% (t) + bn n ( t))

where n (t) - sin(2xnt) and '1n(t) - cos(2wnt) . The meanvalue

x. - [x(t)] is the variable on the torus T . Zn these coordinates,
08

the gradient equation d z - Vg(z) becomes, if we omit the nonlinear

term Pro(u(z)),whnich is unifor'mly bounded:

d
- x 0
d
- yo -byo

n bn
ai 2xn JT -b 0

l<n<,N . Since, by assumption, det b A 0 , we see from this repre-

sentation, that the vectorfield transversal to the torus is hyper-

bolic, if we omit the nonlinear terms. Since the omitted terms are

uniformly bounded, we can construct therefore, as in Lemma 2, a special

isolating block for the gradient flow 17g(z) which is of the form:

Tn times hyperbolic. Application of the Corollary to theorem 5

together with theorem 4 yields (n+1) critical points of q , which
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give rise to (n+l) periodic solutions. We claim that the periodic

solutions found are contained in the region Tn x D c Tnx Rn , where D

is as in the assumption of theorem 3. In fact, on T n x (Rn\ D) the

Hamiltonian system is integrable;

- - h(t,x,y) - by + a

= _ _9 h (t,x ,y) = o
ax

Hence the tori Tn x (y) are invariant under the flow, and the

restriction of the flow onto a torus Tnx [y) is in fact linear:

4p : (xy)v- (x+t(by+a) ,y) . In particular, the periodic solutions are,

on Rn x (RnAD) , not described by periodic functions. Therefore the

periodic solutions found above must Lie in Tnx D . The proof of

theorem 3 is finished. U

7. Proof of theorem 2

We shall make use of the Morse-theory for flows as represented in

[7 ]. In order to briefly outline the result we need, we consider a

continuous flow on a locally compact and metric space X . A compact

and invariant subset S cX is called isolated, if it admits a compact

neighborhood N such that S is the maximal invariant subset which

is contained in N . With an isolated invariant set S a pair (N1,N2)

of compact spaces can be associated, where N2 c N, is roughly the

"exit set" of N1 and where S c int(N 1\ N2) is the invariant set

contained in N. The homotopy type of the pointed space (NI/N2 . )

then does not depend on the particular choice of the "index-pair"

(N1 ,N 2) for S , and is called the index of S . It is denoted by

h(S) - ((N1/N 2 ,*) . The algebraic invariants of h(S) are defined

to be p(t,h(S)) :- S tj dim Aj(N 1 .N2) where (NI,N 2 ) is any index-
j >o

-19-
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pair for S Let now {MI,....Mk} be an ordered Morse-decomposition

of S . Then the relation between the algebraic invari'ants of h(M)

and those of h(S) is described by the following Morse-inequalities

(see [ 7 ], theorem 3.3)

k
(17) I p(t,h(M.)) p(t,h(S)) + (1+t)Q(t)

where Q is a formal power series with non-negative integer coeffi-

cients.

We shall apply this equation to the flow of Vg on T 2n x RN x RN

with S being the set of bounded solutions. Then S is compact,
, ZTn x 2N

since by (13) , IVg(z)j I !e for all z - (x, ) . T X R with 141> K.

In particular S is contained in the interior of the compact set

8 :- T2nX DI x D 2 , if we choose the radii of the discs sufficiently

big. Moreover, by Lemma 2, the compact pair (B,B) , with the exit
set B :- T2 X OD x D , is an index pair for S in the sense of

(( 7 1, definition 3.4) . Therefore h(S) - [ (B/B,*) and the algebraic

invariants of h(S) are easily computed. Namely
8*h());.(-B-* ~ *BB);H(2n ,Tn

(h (S) f4 (1/B ,) H(B ,B n(T 2n x D T x 6D1 ) which, by the

KUnneth-formula, is isomorphic to H*(T n) H*(DIOD 1 ) . As

VN NE*(D 1 ,8D1 ) 1 ,i) , S being a sphere of dimension N , we con-

clude H j(h(S)) H HJN(T 2 n) . consequently, the algebraic invariants

of h(S) are given by

2n Zn
(18) p(t,h(s)) - z ( .) t

j-o

Recall Lemma 1 and assume that all the periodic solutions having

period I are nondegenerate. In this case it can be shown (Q 7 1,

Lmma 2.6) that the function g is a Morse-function, hence has only

nondegenerate critical points. Their number is finite, since the
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critical points are contained in the compact set B . Therefore the

critical points {z.I - M can be labeled so that they form an

ordered Morse-decomposition of S . It is easily seen (Q 7 1, sect. 3.6)

that h((z.)) - S 1)1 , where dj is the Morse-index of the

critical point z. * Consequently p(th((z}) t d j . Hence, by (18),

the Morse-inequalities look as follows:

k dj 2n 2 n J+N
(19) z - z ( )t + (I+t)Q(t)

j- j-o j

Since the polynomial Q has nonnegative integer coefficients we2n 2n) .2nconclude in particular that indeed k > I ( , as we wanted

to prove. a

8. Appendix

We prove the following statement which we found in V.I. Arnoldts

book C 2 1, Appendix 9, without proof however. The idea of the proof

was suggested to us by J. Mather.

Theorem 6. IU % is a symolectic CO -diffeomorphism of T 2= R 2/Z2

then the following statements are equivalent.

(i) *1 , on R2  o f the form x -..x + f(x) with f being

periodic and f1 - 0

2(ii) * is generated by a globally Hamiltonian vectorfield on T

(iii) * belongs to the commutator subgroup of' Diffe(T 2,w) the
0

identity comoonent of the group Dif?'(T2 u) of svmplectic

diffeomorphisms of T2

The statement (ii) - (iii) is a special case of a result due to

A. Banyaga [ 4 1. In order to prove (i) (ii) we begin with a L-!mma,

which is due to J. Moser.
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Let M be a compact symplectic manifold. Fixing a symplectic

form )0 on N we consider the set n = (symplectic forms w on

M11 M w0  for all 2-cycles c on 1 )M
c c

Lemma 5. Let so-* w 1 , at (0,11 be a closed curve which is contrac-

tible to w in g , i.e. there exist wat E 1 n s,t 4 (0,11 with

= W 1 $ w for s (0,) , and w W't = 'o for t* (0,11.

Then there exists a closed curve s-*4 i Diffe(M) satisfving

'ws w0  and Vo mid

Remark. For dim M v 2 every closed curve w* meets the assumption of

the Lemma. In fact, since a is convex we can set

W a tw5 + (1-t)w0 0 . For dim M>2 the assumption is met, if the

component of 9 containing wo is simply connected. When this is the

case is not known to us.

Proof. We follow (101. By the Hodge decomposition theorem with respect
d

to a given metric on X we have the representation d w - dast+ hst.

The 2-form hst is harmonic. We shall require that a stm 6t so that

the choice of a is unique. Since by assumption the periods of w

are independent of t , those of - ws are zero and so h5t 0
dt ta

Thus

(20) d
t wat dot

where, by the above normalization, ast is unique. As w(It= Woto W

we therefore have ot0 . Let Vat be the unique vectorfield

satisfying

(21) w a ( st,- (V tt

and let 4st be the flow

(22) d Vst" Vst *st dso id

-22-
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Since dw 0 one finds with (20) and (21)

wst) - d*- s+dvtvt*)
dts t( dt w~dt

a V;tc[ ust- dst) -' 0

Hence st Uet " so 0 - o I Also, from V ot V 0t , we conclude

(Pt f Vot = id Therefore qs = 0sl is the desired loop of diffeo-

morphisms. U

Consider now M T2n  and let w b 0 e the standard symplectic

2n
form on T . Define the subgroups A , All A 2  of Diff (M) as

follows

A - Diffe(M) 4P homotopic to id )
A, = {tJ tA]o*w = wo }

A 2 -(IrDiff (M) w**O - uo and, on R n
, n (x) - x + p(x)

with (p] - O

Then clearly A )A I A A

2

.Le_. If M T then A1  and also A2 are connected by smooth

arcs.

2Proof. It is a nontrivial fact, that, since dim T , 2 , the group

of diffeomorphisms of T2 which are homotopic to the identity is

equal to the one component of Dife(T 2) , which is connected by

smooth arcs, see C.J. Earle and J. EelIs (13 1. If A 1 we take a

smooth arc s a A with o -id and X1 i Ay and set sw Xsw o E

so that )5 -W 0  for s = 0,1 . By Lemma 5 there is V with

qs*w f W and fo= q) id . Therefore ps I *5 ac * AI and

p id,

-23-



2r

If, moreover (&A2 - then q,: x.-.x+a sp (x) a i R and

aO  a, = 0 , (p 1 0 . We set T s X-X - a s then Us" TSS q A2

and ;o-id .

In view of this lemma, the statement (i) . (ii) is an imnediate

consequence of the following simple

Lemma 7. A smooth arc t 4 A, with 4, = id is the flow of a

-globally Hamiltonian vectorfield on T2n  if and only if jt a A2

Proof. Let %t t A2 t then qt" x I.x + pt(x) with (pt- 0 . Since

41wo - u we conclude

d P.4-1= Vh

Vh(tx) being periodic in x, so that h(t,x) = <x,c(t)> + h1 (t,x) with h

periodic in x. But( pt] I 0 , hence [Pt* %tp]  ( [ ]] 0 and conse-

quently c(t) = o, so that indeed h=h I  is periodic in x . Conversely,if

t is the flow of the globally Hamiltonian vectorfield Jv7h on T2n

then ko = Uo and ,p 6 A a

We would like to thank A. Dold, M. Herman, J. Mather and J. Moser

for suggestions and helpful discussions. We thank the Forschungs-

institut fUr Mathematik ETH ZWrich for its hospitality.

-24-



References

(11 H. Amann and E. Zehnder: "Nontrivial Solutions for a Class of

Nonresonance Problems and Applications to Nonlinear Differential

Equations". Annali Sc. Norm. Sup. Pisa, Serie IV. Vol. VII

(1980) , 539-603.

[2] V.I. Arnold: "Mathematical Methods of Classical Mechanics",

(Appendix 9) , Springer 1978.

(3] V.I. Arnold: Proceedings of Symposia in Pure Mathematics,

Vol. XXVIII A.M.S. (1976) , p. 66.

(41 A. Banyaga:"Sur la structure du groupe des diff~omorphismes qui

prdservent une forme symplectique". Comment. Math. Helvetici 53

(1978) , 174-227.

(5] A. Banyaga: "On fixed points of symplectic maps", Preprint.

(61 c.C. Conley: "Isolated invariant sets and the Morse index",

CBMS, Regional Conf. Series in Math., 38 (1Q78).

(7J C.C. Conley and E. Zehnder: "Morse type index theory for flcws

and periodic solutions for Hamiltonian equations". To appear in

Comm. Pure and Appl. Math.

[8) J. Moser: "A fixed point theorem in symplectic geometry". Acta

Math. 141 (1978) . 17-34.

[91 J. Moser: "Proof of a generalized form of a fixed point theorem

due to G.D. Birkhoff". Springer Lecture Notes in Mathematics,

Vol. 597: Geometry and Topology (1977) , 464-494.

(101 J. Moser: "On the volume elements on a manifold". Transactions

Amer. Math. Soc. 120 (1965), 286-294.

[11] H. Poincar6: "Mdthodes nouvelles de la m~canique c6leste". Vol. 3,

chap. 28, Gauthier Villars, Paris (1899).

-25-

L' '[illl ii . . . . .. . . . . .. .. . . j



(121 A. Weinstein: "Lectures on symplect.c manifolds", CBMS.

Regional conf. series in Math., 29 (1977).

(131 C.J. Earle and J. Eells: "A fibre bundle description of

Teichmaller theory". J. Diff. Geometry 3 (1969). 19-43.

CCC/EZ/jvs

-26-



SECURITY CLASSIFICATION OF THIS PAGE (Whn Date Enter.o

REPORT DOCUMENTATION PAGE BEFOZ CMP-LETINGORM

1. REPORT NUMBER 2.GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

#2569

4. TITLE (and Subeflet) S. TYPE OF REPORT & PERIOD COVERED
Summary Report - no specificThe Birkhoff-Lewis Fixed Point Theorem and a SmayRpr oseii

Conjctue ofV. . Aroldreporting period
Conjecture of V. I. Arnold s. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) S. CONTRACT OR GRANT NUMBER(s)

Charles C. Conley and Eduard Zehnder DAAG9-80-C-0041

. PERFORMING ORGANIZATION NAME AND ADDRESS tO. PROGRAM ELEMENT. PROJECT. TASK

Mathematics Research Center, University of AREA & WORK UNIT NUMBERS
Work Unit Number 1 -

610 Walnut Street Wisconsin Applied Analysis
Madison, Wisconsin 53706
1I. CONTROLLMIG OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office September 1983
P.O. Box IZZll IS. NUMBER OF PAGES

Research Triangle Park, North Carolina Z7709 26
14. MONITORING AGENCY NAME & ADDRESS(i diffterent fmm Controllng Offie) IS. SECURITY CLASS. (of tihie repor)

UNCLASSIFIED
1Sa. OECL ASSI FiC ATION/oOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Repoti)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the aberact entered in Slock 20, it different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revers aide It neceesay ind Identify by block number)

Fixed points of symplectic maps, Arnold conjecture, periodic solutions of
Hamiltonian systems, qualitative behaviour of flows.

20. ABSTRACT (Continue on reverse side if neceeerY'and Identify by block number)

The following conjecture of V. I. Arnold is proved: every measure pre-
serving diffeomorphism of the torus T2, which is homologeous to the identity,
and which leaves the center of mass invariant, possesses at least 3 fixed points
The proof of this global fixed point theorem does not make use of the generating
function technique. The theorem is a consequence of the statement that a
Hamiltonian vectorfield on a torus T2n, which depends periodically on time,
possesses at least (2n+l) forced oscillations. These periodic solutions are
found using the classical variational principle by means of two qualitative
statements for general flows. A second conjecture of V. 1. Arnold proved con-
cerns a Birkhoff-Lewis type fixed point theorem for symplectic maps.

DO I 1473 EDITION O, I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (110bon Dae Entered)




